An efficient and principled method for detecting communities in networks
نویسندگان
چکیده
A fundamental problem in the analysis of network data is the detection of network communities, groups of densely interconnected nodes, which may be overlapping or disjoint. Here we describe a method for finding overlapping communities based on a principled statistical approach using generative network models. We show how the method can be implemented using a fast, closedform expectation-maximization algorithm that allows us to analyze networks of millions of nodes in reasonable running times. We test the method both on real-world networks and on synthetic benchmarks and find that it gives results competitive with previous methods. We also show that the same approach can be used to extract nonoverlapping community divisions via a relaxation method, and demonstrate that the algorithm is competitively fast and accurate for the nonoverlapping problem.
منابع مشابه
Detecting Overlapping Communities in Social Networks using Deep Learning
In network analysis, a community is typically considered of as a group of nodes with a great density of edges among themselves and a low density of edges relative to other network parts. Detecting a community structure is important in any network analysis task, especially for revealing patterns between specified nodes. There is a variety of approaches presented in the literature for overlapping...
متن کاملDetecting communities of workforces for the multi-skill resource-constrained project scheduling problem: A dandelion solution approach
This paper proposes a new mixed-integer model for the multi-skill resource-constrained project scheduling problem (MSRCPSP). The interactions between workers are represented as undirected networks. Therefore, for each required skill, an undirected network is formed which shows the relations of human resources. In this paper, community detection in networks is used to find the most compatible wo...
متن کاملDesign an Efficient Community-based Message Forwarding Method in Mobile Social Networks
Mobile social networks (MSNs) are a special type of Delay tolerant networks (DTNs) in which mobile devices communicate opportunistically to each other. One of the most challenging issues in Mobile Social Networks (MSNs) is to design an efficient message forwarding scheme that has a high performance in terms of delivery ratio, latency and communication cost. There are two different approaches fo...
متن کاملGeneralized communities in networks
A substantial volume of research is devoted to studies of community structure in networks, but communities are not the only possible form of large-scale network structure. Here, we describe a broad extension of community structure that encompasses traditional communities but includes a wide range of generalized structural patterns as well. We describe a principled method for detecting this gene...
متن کاملMining Overlapping Communities in Real-world Networks Based on Extended Modularity Gain
Detecting communities plays a vital role in studying group level patterns of a social network and it can be helpful in developing several recommendation systems such as movie recommendation, book recommendation, friend recommendation and so on. Most of the community detection algorithms can detect disjoint communities only, but in the real time scenario, a node can be a member of more than one ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1104.3590 شماره
صفحات -
تاریخ انتشار 2011